हिंदी

How Many Different Words Can Be Formed from the Letters of the Word 'Ganeshpuri'? in How Many of These Words:The Letter G Always Occupies the First Place? - Mathematics

Advertisements
Advertisements

प्रश्न

How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?

उत्तर

The word GANESHPURI consists of 10 distinct letters.
Number of letters = 10!

If we fix the first letter as G, the remaining 9 letters can be arranged in 9! ways to form the words.
∴ Number of words starting with the letter G = 9!

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.4 | Q 6.2 | पृष्ठ ३७

संबंधित प्रश्न

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


Prove that: n! (n + 2) = n! + (n + 1)!


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


In how many ways can five children stand in a queue?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


How many three-digit numbers are there, with no digit repeated?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×