हिंदी

In How Many Ways Can the Letters of the Word"Intermediate" Be Arranged So That:The Vowels Always Occupy Even Places? - Mathematics

Advertisements
Advertisements

प्रश्न

In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?

उत्तर

The word INTERMEDIATE consists of 12 letters that include two Is, two Ts and three Es.

There are 6 vowels (I, I, E, E, E and A) that are to be arranged in six even places =\[\frac{6!}{2!3!}\]= 60

The remaining 6 consonants can be arranged amongst themselves in\[\frac{6!}{2!}\]

ways, which is equal to 360.
By fundamental principle of counting, the number of words that can be formed = 60\[\times\]360 = 21600

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.5 | Q 27.1 | पृष्ठ ४४

संबंधित प्रश्न

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


If (n + 2)! = 60 [(n − 1)!], find n. 


If nP4 = 360, find the value of n.


If P (9, r) = 3024, find r.


If P (n, 4) = 12 . P (n, 2), find n.


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×