Advertisements
Advertisements
प्रश्न
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
उत्तर
There are 4 odd digits (1,3,3 and 1) that are to be arranged in 4 odd places in\[\frac{4!}{2!2!}\]ways.
The remaining 3 even digits 2, 2 and 4 can be arranged in 3 even places in\[\frac{3!}{2!}\]ways.
By fundamental principle of counting:
Required number of arrangements =\[\frac{4!}{2!2!}\]\[\times\]\[\frac{3!}{2!}\]= 18
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 2)! = 60 [(n − 1)!], find n.
If (n + 1)! = 90 [(n − 1)!], find n.
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If nP4 = 360, find the value of n.
If P (9, r) = 3024, find r.
If P(11, r) = P (12, r − 1) find r.
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]