Advertisements
Advertisements
प्रश्न
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
उत्तर
Number of vowels = 2
Number of consonants = 5
Considering the two vowels as a single entity, we are now to arrange 6 entities taken all at a time.
Total number of ways = 6!
Also, the two vowels can be mutually arranged amongst themselves in 2! ways.
By fundamental principle of counting:
Total number of words that can be formed = 6!\[\times\]2! = 1440
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that: n! (n + 2) = n! + (n + 1)!
Prove that:
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P (n, 5) = 20. P(n, 3), find n ?
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
How many three-digit numbers are there, with no digit repeated?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.