हिंदी

How Many Three-digit Numbers Are There, with No Digit Repeated? - Mathematics

Advertisements
Advertisements

प्रश्न

How many three-digit numbers are there, with no digit repeated?

उत्तर

Total number of 3-digit numbers = Number of arrangements of 10 numbers, taken 3 at a time = 10P3 =\[\frac{10!}{7!} = 10 \times 9 \times 8 = 720\] 

Total number of 3-digit numbers, having 0 at its hundred's place = 9P2 =\[\frac{9!}{7!} = 9 \times 8 = 72\]

Total number of 3-digit numbers with distinct digits = 10P3\[-\] 9P2 = 720\[-\] 72 = 648

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Permutations - Exercise 16.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 16 Permutations
Exercise 16.3 | Q 25 | पृष्ठ २९

संबंधित प्रश्न

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If (n + 1)! = 90 [(n − 1)!], find n.


If P (n, 4) = 12 . P (n, 2), find n.


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many number of four digits can be formed with the digits 1, 3, 3, 0?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Write the maximum number of points of intersection of 8 straight lines in a plane.


Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×