Advertisements
Advertisements
प्रश्न
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
उत्तर
1.P (1, 1) + 2. P (2, 2) + 3. P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1
P (n,n) = n!
1.1! + 2.2! + 3.3! ......+ n.n! = (n+1)! − 1
LHS = 1.1! + 2.2! + 3.3! ......+ n.n!
\[= \sum^n_{r = 1} r . r!\]
\[ = \sum^n_{r = 1} \left[ \left( r + 1 \right) - 1 \right] r!\]
\[ = \sum^n_{r = 1} \left[ \left( r + 1 \right) r! - r! \right]\]
\[ = \sum^n_{r = 1} {(r + 1)! - r!} \]
\[ = \left( 2! - 1! \right) + \left( 3! - 2! \right) + . . . \left[ \left( n + 1 \right)! - n! \right]\]
\[ = \left[ \left( n + 1 \right)! - 1! \right] \]
\[ = \left[ \left( n + 1 \right)! - 1 \right] = \text{RHS}\]
\[ \text{Hence, proved} .\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that:
If P (5, r) = P (6, r − 1), find r ?
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P (n, 5) = 20. P(n, 3), find n ?
If P(11, r) = P (12, r − 1) find r.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Write the number of diagonals of an n-sided polygon.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]