Advertisements
Advertisements
प्रश्न
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
उत्तर
\[ 5 \times 6 \times 7 \times 8 \times 9 \times 10 = \frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10}{1 \times 2 \times 3 \times 4}\]
\[ = \frac{10!}{4!}\]
APPEARS IN
संबंधित प्रश्न
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 2)! = 60 [(n − 1)!], find n.
If P (5, r) = P (6, r − 1), find r ?
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
How many three-digit numbers are there, with no digit repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.