हिंदी

Write the Value of 6 ∑ R = 1 56 − R C 3 + 50 C 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]

उत्तर

We know:
nC\[-\]1 + nCr = n+1Cr

\[\text{Now, we have}: \]
\[ \sum^6_{r = 1} {}^{56 - r} C_3 + {}^{50} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{51} C_3 +^{50} C_3 +^{50} C_4\]
\[=^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{51} C_3 +^{51} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{52} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{53} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{54} C_4 \]
\[ =^{55} C_3 +^{55} C_4 \]
\[ =^{56} C_4 \]
shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.4 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.4 | Q 5 | पृष्ठ २४

संबंधित प्रश्न

If (n + 2)! = 60 [(n − 1)!], find n. 


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


How many three-digit numbers are there, with no digit repeated?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the maximum number of points of intersection of 8 straight lines in a plane.


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×