हिंदी

Let R and N Be Positive Integers Such that 1 ≤ R ≤ N. Then Prove the Following: N C R N C R − 1 = N − R + 1 R - Mathematics

Advertisements
Advertisements

प्रश्न

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

उत्तर

\[\frac{{}^n C_r}{{}^n C_{r - 1}} = \frac{n - r + 1}{r}\]

\[LHS = \frac{{}^n C_r}{{}^n C_{r - 1}} \]
\[ = \frac{n!}{r! \left( n - r \right)!} \times \frac{\left( r - 1 \right)! \left( n - r + 1 \right)!}{n!} \]
\[ = \frac{\left( n - r + 1 \right) \left( n - r \right)! \left( r - 1 \right)!}{r \left( r - 1 \right)! \left( n - r \right)!}\]
\[ = \frac{n - r + 1}{r} = RHS\]

∴\[LHS = RHS\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.1 [पृष्ठ ९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.1 | Q 20.1 | पृष्ठ ९

संबंधित प्रश्न

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If nP4 = 360, find the value of n.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


How many three-digit numbers are there, with no digit repeated?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


Find the number of words formed by permuting all the letters of the following words:
SERIES


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of diagonals of an n-sided polygon.


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×