English

Write the Value of 6 ∑ R = 1 56 − R C 3 + 50 C 4 - Mathematics

Advertisements
Advertisements

Question

Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]

Solution

We know:
nC\[-\]1 + nCr = n+1Cr

\[\text{Now, we have}: \]
\[ \sum^6_{r = 1} {}^{56 - r} C_3 + {}^{50} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{51} C_3 +^{50} C_3 +^{50} C_4\]
\[=^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{51} C_3 +^{51} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{52} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{53} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{54} C_4 \]
\[ =^{55} C_3 +^{55} C_4 \]
\[ =^{56} C_4 \]
shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.4 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.4 | Q 5 | Page 24

RELATED QUESTIONS

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


If (n + 2)! = 60 [(n − 1)!], find n. 


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (5, r) = P (6, r − 1), find r ?


If P (9, r) = 3024, find r.


If P(11, r) = P (12, r − 1) find r.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


In how many ways can five children stand in a queue?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


How many three-digit numbers are there, with no digit repeated?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

INDIA


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the maximum number of points of intersection of 8 straight lines in a plane.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×