Advertisements
Advertisements
Question
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Solution
We know:
nCr \[-\]1 + nCr = n+1Cr
\[ \sum^6_{r = 1} {}^{56 - r} C_3 + {}^{50} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{51} C_3 +^{50} C_3 +^{50} C_4\]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{52} C_3 +^{52} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{53} C_3 +^{53} C_4 \]
\[ =^{55} C_3 +^{54} C_3 +^{54} C_4 \]
\[ =^{55} C_3 +^{55} C_4 \]
\[ =^{56} C_4 \]
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
If (n + 2)! = 60 [(n − 1)!], find n.
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If P (5, r) = P (6, r − 1), find r ?
If P (9, r) = 3024, find r.
If P(11, r) = P (12, r − 1) find r.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
In how many ways can five children stand in a queue?
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
How many three-digit numbers are there, with no digit repeated?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the maximum number of points of intersection of 8 straight lines in a plane.