English

There Are Two Works Each of 3 Volumes and Two Works Each of 2 Volumes; in How Many Ways Can the 10 Books Be Placed on a Shelf So that the Volumes of the Same Work Are Not Separated? - Mathematics

Advertisements
Advertisements

Question

There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?

Solution

There are 4 different types of works.
∴ Number of arrangements of these 4 works, taken 4 at a time = 4!
Of these 4 works, two of the works with 3 volumes each can be arranged in 3! ways each and two of the works with 2 volumes each can be arranged in 2! ways.
Total number of arrangements  = 4! x (3! x 3!) x (2! x 2!) = 3456

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.3 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.3 | Q 23 | Page 29

RELATED QUESTIONS

Prove that: n! (n + 2) = n! + (n + 1)!


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (5, r) = P (6, r − 1), find r ?


If P(11, r) = P (12, r − 1) find r.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

INDIA


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Write the maximum number of points of intersection of 8 straight lines in a plane.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×