Advertisements
Advertisements
Question
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
Solution
The word GANESHPURI consists of 4 vowels. If we keep all the vowels together, we have to consider them as a single entity.
So, we are left with the remaining 6 consonants and all the vowels that are taken together as a single entity. This gives us a total of 7 entities that can be arranged in 7! ways.
Also, the 4 vowels can be arranged in 4! ways amongst themselves.
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
Prove that:
If P (5, r) = P (6, r − 1), find r ?
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P (n, 5) = 20. P(n, 3), find n ?
If nP4 = 360, find the value of n.
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
Write the number of diagonals of an n-sided polygon.