English

Find the Total Number of Arrangements of the Letters in the Expression A3 B2 C4 When Written at Full Length. - Mathematics

Advertisements
Advertisements

Question

Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.

Solution

When expanded, a3 b2 c4   would result in total 9 letters.
This is same as permuting 9 things, of which 3 are similar to the first kind, 2 are similar to the second kind and four are similar to the third kind, i.e. three as , two bs and four cs.
Required number of arrangements =\[\frac{9!}{3!2!4!}\]= 1260

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.5 | Q 4 | Page 42

RELATED QUESTIONS

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 1)! = 90 [(n − 1)!], find n.


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (n, 5) = 20. P(n, 3), find n ?


If P(11, r) = P (12, r − 1) find r.


If P (n, 4) = 12 . P (n, 2), find n.


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:

INDIA


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if  all letters are used at a time 


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of diagonals of an n-sided polygon.


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×