Advertisements
Advertisements
Question
Prove that:
Solution
\[\text{LHS} = \frac{\left( 2n + 1 \right)!}{n!} \]
\[ = \frac{\left( 2n + 1 \right)\left( 2n \right)\left( 2n - 1 \right) . . . . \left( 4 \right)\left( 3 \right)\left( 2 \right)\left( 1 \right)}{n!}\]
\[ = \frac{\left[ \left( 1 \right)\left( 3 \right)\left( 5 \right) . . . . . . . . . \left( 2n - 1 \right)\left( 2n + 1 \right) \right]\left[ \left( 2 \right)\left( 4 \right)\left( 6 \right) . . . . . . . . . \left( 2n \right) \right]}{n!} \]
\[ = \frac{2^n \left[ \left( 1 \right)\left( 3 \right)\left( 5 \right) . . . . . . . . . \left( 2n - 1 \right)\left( 2n + 1 \right) \right]\left[ \left( 1 \right)\left( 2 \right)\left( 3 \right) . . . . . . . . . \left( n \right) \right]}{n!}\]
\[ = \frac{2^n \left[ \left( 1 \right)\left( 3 \right)\left( 5 \right) . . . . . . . . . \left( 2n - 1 \right)\left( 2n + 1 \right) \right]\left[ n! \right]}{n!}\]
\[ = 2^n \left[ \left( 1 \right)\left( 3 \right)\left( 5 \right) . . . . . . . . . \left( 2n - 1 \right)\left( 2n + 1 \right) \right] = \text{RHS}\]
\[ \text{Hence, proved} . \]
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 2)! = 60 [(n − 1)!], find n.
How many three-digit numbers are there, with distinct digits, with each digit odd?
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.