Advertisements
Advertisements
Question
How many three-digit numbers are there, with distinct digits, with each digit odd?
Solution
The odd digits are 1, 3, 5, 7 and 9.
Required number of ways = Number of arrangements of five digits ( 1, 3, 5, 7 and 9), taken three at a time = 5P3
\[ = \frac{5!}{2!}\]
\[ = \frac{5 \times 4 \times 3 \times 2!}{2!}\]
\[ = 5 \times 4 \times 3\]
\[ = 60\]
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
If (n + 2)! = 60 [(n − 1)!], find n.
If (n + 3)! = 56 [(n + 1)!], find n.
If P (n, 5) = 20. P(n, 3), find n ?
If nP4 = 360, find the value of n.
If P (9, r) = 3024, find r.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
How many three-digit numbers are there, with no digit repeated?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Write the number of diagonals of an n-sided polygon.
Write the maximum number of points of intersection of 8 straight lines in a plane.