Advertisements
Advertisements
Question
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
Solution
The word VOWELS consists of 4 consonants.
If we keep all the consonants together, we have to consider them as a single entity.
Now, we are left with the 2 vowels and all the consonants that are taken together as a single entity.
This gives us a total of 3 entities that can be arranged in 3! ways.
It is also to be considered that the 4 consonants can be arranged in 4! ways amongst themselves.
By fundamental principle of counting:
∴ Total number of arrangements = 3!\[\times\]4! = 144
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
If (n + 2)! = 60 [(n − 1)!], find n.
If (n + 1)! = 90 [(n − 1)!], find n.
Prove that:
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
there is no restriction on letters?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
SERIES
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the number of diagonals of an n-sided polygon.