Advertisements
Advertisements
Question
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
Solution
The word VOWELS consists of 2 vowels.
If we keep all the vowels together, we have to consider them as a single entity.
Now, we are left with the 4 consonants and all the vowels that are taken together as a single entity.
This gives us a total of 5 entities that can be arranged in 5! ways.
It is also to be considered that the 2 vowels can be arranged in 2! ways amongst themselves.
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
If P (9, r) = 3024, find r.
If P (n, 4) = 12 . P (n, 2), find n.
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
How many three-digit numbers are there, with no digit repeated?
How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
Find the number of words formed by permuting all the letters of the following words:
ARRANGE
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.