English

A Biologist Studying the Genetic Code is Interested to Know the Number of Possible Arrangements of 12 Molecules in a Chain. the Chain Contains 4 Different Molecules Represented by the Initials a - Mathematics

Advertisements
Advertisements

Question

A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?

Solution

Number of molecules in a chain = 12
Number of molecules with initials A = 3
Number of molecules with initials C = 3
Number of molecules with initials G = 3
Number of molecules with initials T = 3
Thus, total arrangements of all the molecules in the chain = Number of arrangements of 12 things of which 3 are similar to the first kind, 3 are similar to the second kind, 3 are similar to the third kind and 3 are similar to the fourth kind
=\[\frac{12!}{3!3!3!3!}\]= 369600

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.5 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.5 | Q 17 | Page 43

RELATED QUESTIONS

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


If (n + 1)! = 90 [(n − 1)!], find n.


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

If nP4 = 360, find the value of n.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


In how many ways can five children stand in a queue?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


How many three-digit numbers are there, with no digit repeated?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×