English

Find the Number of Words Formed by Permuting All the Letters of the Following Words:Pakistan - Mathematics

Advertisements
Advertisements

Question

Find the number of words formed by permuting all the letters of the following words:

PAKISTAN

Solution

This word consists of 8 letters that include two As.
The total number of words is the number of arrangements of 7 things, of which 2 are similar to one kind.
⇒\[\frac{8!}{2!}\]= 20160

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.5 | Q 1.5 | Page 42

RELATED QUESTIONS

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (9, r) = 3024, find r.


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


Find the number of words formed by permuting all the letters of the following words:
SERIES


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Write the maximum number of points of intersection of 8 straight lines in a plane.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×