English

If a Denotes the Number of Permutations of (X + 2) Things Taken All at a Time, B the Number of Permutations of X Things Taken 11 at a Time and C the Number of Permutations of X − 11 Things Taken All - Mathematics

Advertisements
Advertisements

Question

If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.

Solution

a = x+2Px+2 = (x+2)!
b  = xP11 =\[\frac{x!}{(x - 11)!}\]

c= x\[-\]11Px\[-\]11 =\[(x - 11)!\]

a = 182 bc

\[\Rightarrow\] (x+2)! = 182\[\frac{x!}{\left( x - 11 \right)!}\]\[\times \left( x - 11 \right)!\]
\[\Rightarrow\](x+2)! = 182 (x!)
\[\Rightarrow \frac{\left( x + 2 \right)!}{x!} = 182\]
\[ \Rightarrow \left( x + 2 \right)\left( x + 1 \right) = 182\]
\[ \Rightarrow \left( x + 2 \right)\left( x + 1 \right) = 14 \times 13 \]
\[ \Rightarrow x + 2 = 14\]
\[ \Rightarrow x = 12\]
shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.3 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.3 | Q 28 | Page 29

RELATED QUESTIONS

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Convert the following products into factorials: 

3 · 6 · 9 · 12 · 15 · 18


If (n + 1)! = 90 [(n − 1)!], find n.


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (9, r) = 3024, find r.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many three-digit numbers are there, with distinct digits, with each digit odd?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×