English

For all positive integers n, show that 2nCn + 2nCn − 1 = 12 2n + 2Cn+1 - Mathematics

Advertisements
Advertisements

Question

For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 

Sum

Solution

\[LHS = {}^{2n} C_n + {}^{2n} C_{n - 1} \]

\[ = \frac{\left( 2n \right)!}{n! n!} + \frac{\left( 2n \right)!}{\left( n - 1 \right)! \left( 2n - n + 1 \right)!}\]

\[ = \frac{\left( 2n \right)!}{n! n!} + \frac{\left( 2n \right)!}{\left( n - 1 \right)! \left( n + 1 \right)!}\]

\[ = \frac{\left( 2n \right)!}{n \left( n - 1 \right)! n!} + \frac{\left( 2n \right)!}{\left( n - 1 \right)! \left( n + 1 \right)n!}\]

\[ = \frac{\left( 2n \right)!}{n! \left( n - 1 \right)!} \left[ \frac{1}{n} + \frac{1}{n + 1} \right]\]

\[ = \frac{\left( 2n \right)!}{n! \left( n - 1 \right)!} \left[ \frac{2n + 1}{n \left( n + 1 \right)} \right]\]

\[ = \frac{\left( 2n + 1 \right)!}{n! \left( n + 1 \right)!}\]

\[RHS = \frac{1}{2} {}^{2n + 2} C_{n + 1} \]

\[ = \frac{1}{2} \left[ \frac{\left( 2n + 2 \right)!}{\left( n + 1 \right)! \left( 2n + 2 - n - 1 \right)!} \right]\]

\[ = \frac{1}{2} \left[ \frac{\left( 2n + 2 \right)!}{\left( n + 1 \right)! \left( n + 1 \right)!} \right]\]

\[ = \frac{1}{2} \left[ \frac{\left( 2n + 2 \right) \left( 2n + 1 \right)!}{\left( n + 1 \right) n! \left( n + 1 \right)!} \right]\]

\[ = \frac{1}{2} \left[ \frac{2\left( n + 1 \right) \left( 2n + 1 \right)!}{\left( n + 1 \right) n! \left( n + 1 \right)!} \right]\]

\[ = \frac{\left( 2n + 1 \right)!}{n! \left( n + 1 \right)!}\]

∴ LHS = RHS

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.1 [Page 8]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.1 | Q 17 | Page 8

RELATED QUESTIONS

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Prove that: n! (n + 2) = n! + (n + 1)!


If (n + 3)! = 56 [(n + 1)!], find n.


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (5, r) = P (6, r − 1), find r ?


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (9, r) = 3024, find r.


If P(11, r) = P (12, r − 1) find r.


If P (n, 5) : P (n, 3) = 2 : 1, find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


How many three-digit numbers are there, with no digit repeated?


How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels never come together? 


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many three letter words can be made using the letters of the word 'ORIENTAL'?


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


Find the number of words formed by permuting all the letters of the following words:

RUSSIA


Find the number of words formed by permuting all the letters of the following words:
SERIES


How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time 


Write the number of diagonals of an n-sided polygon.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×