English

If P (N, 5) : P (N, 3) = 2 : 1, Find N. - Mathematics

Advertisements
Advertisements

Question

If P (n, 5) : P (n, 3) = 2 : 1, find n.

Solution

We have, P (n, 5):P (n, 3) = 2:1

\[\Rightarrow \frac{n!}{\left( n - 5 \right)!} \times \frac{\left( n - 3 \right)!}{n!} = \frac{2}{1}\]
\[ \Rightarrow \frac{n!}{\left( n - 5 \right)!} \times \frac{\left( n - 3 \right)\left( n - 4 \right)\left( n - 5 \right)!}{n!} = \frac{2}{1}\]
\[ \Rightarrow \left( n - 3 \right)\left( n - 4 \right) = 2\]
\[ \Rightarrow \left( n - 3 \right)\left( n - 4 \right) = 2 \times 1\]
\[\text{Thus, on comparing the LHS and the RHS in above expression, we get}, \]
\[n - 3 = 2\]
\[ \Rightarrow n = 5 \]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.3 | Q 11 | Page 28

RELATED QUESTIONS

Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


If \[\frac{(2n)!}{3! (2n - 3)!}\]  and \[\frac{n!}{2! (n - 2)!}\]  are in the ratio 44 : 3, find n.

 

 


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If P (5, r) = P (6, r − 1), find r ?


If P (9, r) = 3024, find r.


If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.


In how many ways can five children stand in a queue?


How many three-digit numbers are there, with distinct digits, with each digit odd?


There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


How many three-digit numbers are there, with no digit repeated?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels occupy only the odd places?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?


Find the number of words formed by permuting all the letters of the following words:

PAKISTAN


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time 


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Write the maximum number of points of intersection of 8 straight lines in a plane.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×