Advertisements
Advertisements
Question
How many three-digit numbers are there, with no digit repeated?
Solution
Total number of 3-digit numbers = Number of arrangements of 10 numbers, taken 3 at a time = 10P3 =\[\frac{10!}{7!} = 10 \times 9 \times 8 = 720\]
Total number of 3-digit numbers, having 0 at its hundred's place = 9P2 =\[\frac{9!}{7!} = 9 \times 8 = 72\]
Total number of 3-digit numbers with distinct digits = 10P3\[-\] 9P2 = 720\[-\] 72 = 648
APPEARS IN
RELATED QUESTIONS
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If P (n, 5) = 20. P(n, 3), find n ?
If nP4 = 360, find the value of n.
If P (9, r) = 3024, find r.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
How many three-digit numbers are there, with distinct digits, with each digit odd?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
SERIES
How many number of four digits can be formed with the digits 1, 3, 3, 0?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Evaluate
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
Write the maximum number of points of intersection of 8 straight lines in a plane.
Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.
Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.