Advertisements
Advertisements
Question
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
Solution
Let two husbands A, B be selected out of seven males in 7P2 ways. excluding their wives, we have to select two ladies C,D out of remaining 5 wives is 5P2 ways.
Thus, number of ways of selecting the players for mixed double is = 7P2 × 5P2
= 21 × 10
= 210
Now, suppose A chooses C as partner (B will automatically go to D) or A chooses 0 as partner (B will automatically go to C) Thus we have, 4 other ways for teams.
Required number of ways = 210 × 4 = 840
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Prove that:
If P (n, 5) = 20. P(n, 3), find n ?
If P (n, 4) = 12 . P (n, 2), find n.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
In how many ways can five children stand in a queue?
There are two works each of 3 volumes and two works each of 2 volumes; In how many ways can the 10 books be placed on a shelf so that the volumes of the same work are not separated?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all consonants come together?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?
The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.
In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the number of diagonals of an n-sided polygon.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.