Advertisements
Advertisements
Question
Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE
Solution
This word consists of 12 letters that include two Is, two Ts and three Es.
The total number of words is the number of arrangements of 12 things, of which 2 are similar to one kind, 2 are similar to the second kind and 3 are similar to the third kind.
⇒\[\frac{12!}{2!2!3!}\]= 19958400
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
5 · 6 · 7 · 8 · 9 · 10
Prove that: n! (n + 2) = n! + (n + 1)!
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
How many three-digit numbers are there, with no digit repeated?
All the letters of the word 'EAMCOT' are arranged in different possible ways. Find the number of arrangements in which no two vowels are adjacent to each other.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many words can be formed out of the letters of the word, 'ORIENTAL', so that the vowels always occupy the odd places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with O and ends with L?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
PAKISTAN
Find the number of words formed by permuting all the letters of the following words:
SERIES
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
How many words can be formed by arranging the letters of the word 'MUMBAI' so that all M's come together?
In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.