English

From Among the 36 Teachers in a School, One Principal and One Vice-principal Are to Be Appointed. in How Many Ways Can this Be Done? - Mathematics

Advertisements
Advertisements

Question

From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?

Solution

Here, we need to permute 2 teachers out of the 36 available teachers.
It can also be understood as the arrangement of 36 teachers, taken two at a time.
∴ Required number of ways = 36P2

\[= \frac{36!}{\left( 36 - 2 \right)!}\]
\[ = \frac{36!}{34!}\]
\[ = \frac{36 \times 35 \times 34!}{34!}\]
\[ = 36 \times 35 \]
\[ = 1260\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.3 | Q 16 | Page 28

RELATED QUESTIONS

Prove that: n! (n + 2) = n! + (n + 1)!


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If P (9, r) = 3024, find r.


If P(11, r) = P (12, r − 1) find r.


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.


Find the number of words formed by permuting all the letters of the following words:
INTERMEDIATE


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?


How many number of four digits can be formed with the digits 1, 3, 3, 0?


In how many ways can the letters of the word 'ARRANGE' be arranged so that the two R's are never together?


How many different numbers, greater than 50000 can be formed with the digits 0, 1, 1, 5, 9.


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


Find the total number of permutations of the letters of the word 'INSTITUTE'.


If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?


In how many ways can the letters of the word
"INTERMEDIATE" be arranged so that:the vowels always occupy even places?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if (i) 4 letters are used at a time 


Find the number of permutations of n distinct things taken together, in which 3 particular things must occur together.


If 35Cn +7 = 35C4n − 2 , then write the values of n.


Write the number of diagonals of an n-sided polygon.


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×