English

Prove that the Product of 2n Consecutive Negative Integers is Divisible by (2n)! - Mathematics

Advertisements
Advertisements

Question

Prove that the product of 2n consecutive negative integers is divisible by (2n)!

Solution

Let  

\[2n\] negative integers be 
\[\left( - r \right), \left( - r - 1 \right), \left( - r - 2 \right), . . . . , . . . , \left( - r - 2n + 1 \right)\]
Then, product = \[\left( - 1 \right)^{2n} \left( r \right)\left( r + 1 \right)\left( r + 2 \right), . . . . , . . . \left( r + 2n - 1 \right)\]
\[= \frac{\left( r - 1 \right)! \left( r \right)\left( r + 1 \right) \left( r + 2 \right) . . . . . . \left( r + 2n - 1 \right)}{\left( r - 1 \right)!}\]
\[ = \frac{\left( r + 2n - 1 \right)!}{\left( r - 1 \right)!}\]
\[ = \frac{\left( r + 2n - 1 \right)!}{\left( r - 1 \right)!\left( 2n \right)!} \times \left( 2n \right)!\]
\[ = {}^{r + 2n - 1} C_{2n} \times \left( 2n \right)!\]
This is divisible by 
\[\left( 2n \right)! .\]
shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.1 [Page 8]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.1 | Q 16 | Page 8

RELATED QUESTIONS

Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


If (n + 2)! = 60 [(n − 1)!], find n. 


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


If 5 P(4, n) = 6. P (5, n − 1), find n ?


If nP4 = 360, find the value of n.


If P(11, r) = P (12, r − 1) find r.


If P (n, 4) = 12 . P (n, 2), find n.


If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.


In how many ways can five children stand in a queue?


From among the 36 teachers in a school, one principal and one vice-principal are to be appointed. In how many ways can this be done?


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


In how many ways can the letters of the word 'STRANGE' be arranged so that

the vowels come together?

 


How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?


How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many permutations can be formed by the letters of the word, 'VOWELS', when

each word begins with O and ends with L?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all consonants come together?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?


How many words can be formed with the letters of the word 'PARALLEL' so that all L's do not come together?


How many different signals can be made from 4 red, 2 white and 3 green flags by arranging all of them vertically on a flagstaff?


Find the number of numbers, greater than a million, that can be formed with the digits 2, 3, 0, 3, 4, 2, 3.


Find the total number of permutations of the letters of the word 'INSTITUTE'.


The letters of the word 'SURITI' are written in all possible orders and these words are written out as in a dictionary. Find the rank of the word 'SURITI'.


Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n}{}{C}_{r - 1}} = \frac{n - r + 1}{r}\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:

\[\frac{^{n}{}{C}_r}{^{n - 1}{}{C}_{r - 1}} = \frac{n}{r}\]

How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Find the number of permutations of n different things taken r at a time such that two specified things occur together?


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×