English

Find the Number of Different 4-letter Words, with Or Without Meanings, that Can Be Formed from the Letters of the Word 'Number'. - Mathematics

Advertisements
Advertisements

Question

Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.

Solution

Here, we need to permute four of the letters from the available 6 letters of the word NUMBER.
Number of different four letter words = Number of arrangements of 6 letters, taken 4 at a time =6 P4
\[= \frac{6!}{(6 - 4)!}\]
\[ = \frac{6!}{2!}\]
\[ = \frac{6 \times 5 \times 4 \times 3 \times 2!}{2!}\]
\[ = 6 \times 5 \times 4 \times 3 \]
\[ = 360\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.3 | Q 19 | Page 28

RELATED QUESTIONS

Convert the following products into factorials:

5 · 6 · 7 · 8 · 9 · 10


Convert the following products into factorials: 

(n + 1) (n + 2) (n + 3) ... (2n)


Convert the following products into factorials:

1 · 3 · 5 · 7 · 9 ... (2n − 1)


Prove that: n! (n + 2) = n! + (n + 1)!


Prove that: 

\[\frac{n!}{(n - r)!}\] = n (n − 1) (n − 2) ... (n − (r − 1))

Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If 5 P(4, n) = 6. P (5, n − 1), find n ?


If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5, if no digit is repeated? How many of these will be even?


In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?


How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?


Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


How many number of four digits can be formed with the digits 1, 3, 3, 0?


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.


If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.


If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:

the relative order of vowels and consonants do not alter?


The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?


Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.


There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.


How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used but first letter is a vowel?


Write the value of\[\sum^6_{r = 1} \ ^{56 - r}{}{C}_3 + \ ^ {50}{}{C}_4\]


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×