Advertisements
Advertisements
Question
In how many ways can the letters of the word "INTERMEDIATE" be arranged so that:
the relative order of vowels and consonants do not alter?
Solution
The relative positions of all the vowels and consonants is fixed.
Arranging the six vowels at their places, without disturbing their respective places, we can arrange the six vowels in\[\frac{6!}{2!3!}\] ways.
Similarly, arranging the remaining 6 consonants at their places, without disturbing their respective places, we can arrange the 6 consonants in\[\frac{6!}{2!}\] ways.
By fundamental principle of counting, the number of words that can be formed =\[\frac{6!}{2!3!}\] X \[\frac{6!}{2!}\]= 21600
APPEARS IN
RELATED QUESTIONS
Prove that: n! (n + 2) = n! + (n + 1)!
If (n + 1)! = 90 [(n − 1)!], find n.
Prove that:
If P (n, 4) = 12 . P (n, 2), find n.
If P (n − 1, 3) : P (n, 4) = 1 : 9, find n.
If P (2n − 1, n) : P (2n + 1, n − 1) = 22 : 7 find n.
If P (n, 5) : P (n, 3) = 2 : 1, find n.
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels come together?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
How many words can be formed out of the letters of the word 'ARTICLE', so that vowels occupy even places?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if 4 letters are used at a time?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used but first is vowel.
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many numbers can be formed with the digits 1, 2, 3, 4, 3, 2, 1 so that the odd digits always occupy the odd places?
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
Prove that: 4nC2n : 2nCn = [1 · 3 · 5 ... (4n − 1)] : [1 · 3 · 5 ... (2n − 1)]2.
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
Write the number of diagonals of an n-sided polygon.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.