Advertisements
Advertisements
Question
If P (n, 4) = 12 . P (n, 2), find n.
Solution
P (n, 4) = 12 . P (n, 2)
\[\Rightarrow \frac{n!}{\left( n - 4 \right)!} = 12 \times \frac{n!}{\left( n - 2 \right)!}\]
\[ \Rightarrow \frac{\left( n - 2 \right)!}{\left( n - 4 \right)!} = 12 \times \frac{n!}{n!}\]
\[ \Rightarrow \frac{\left( n - 2 \right)\left( n - 3 \right)\left( n - 4 \right)!}{\left( n - 4 \right)!} = 12\]
\[ \Rightarrow \left( n - 2 \right)\left( n - 3 \right) = 12\]
\[ \Rightarrow \left( n - 2 \right)\left( n - 3 \right) = 4 \times 3\]
\[\text{On comparing the LHS and the RHS, we get}: \]
\[n - 2 = 4\]
\[ \Rightarrow n = 6\]
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
If (n + 2)! = 60 [(n − 1)!], find n.
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If P (n, 5) : P (n, 3) = 2 : 1, find n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
In how many ways can 6 boys and 5 girls be arranged for a group photograph if the girls are to sit on chairs in a row and the boys are to stand in a row behind them?
If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letter G always occupies the first place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the letters P and I respectively occupy first and last place?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels are always together?
How many permutations can be formed by the letters of the word, 'VOWELS', when
each word begins with E?
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
If the letters of the word 'LATE' be permuted and the words so formed be arranged as in a dictionary, find the rank of the word LATE.
If the letters of the word 'MOTHER' are written in all possible orders and these words are written out as in a dictionary, find the rank of the word 'MOTHER'.
If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
Find the number of permutations of n different things taken r at a time such that two specified things occur together?
Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.