Advertisements
Advertisements
Question
If P(11, r) = P (12, r − 1) find r.
Solution
P(11, r) = P (12, r − 1)
\[ \Rightarrow \frac{\left( 13 - r \right)}{\left( 11 - r \right)!} = \frac{12!}{11!}\]
\[ \Rightarrow \frac{\left( 13 - r \right)\left( 12 - r \right)\left( 11 - r \right)!}{\left( 11 - r \right)!} = \frac{12 \times 11!}{11!}\]
\[ \Rightarrow \left( 13 - r \right)\left( 12 - r \right) = 12\]
\[ \Rightarrow \left( 13 - r \right)\left( 12 - r \right) = 4 \times 3\]
\[\text{On comparing the two sides, we get}: \]
\[13 - r = 4\]
\[ \Rightarrow r = 9\]
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
If (n + 2)! = 60 [(n − 1)!], find n.
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If P (9, r) = 3024, find r.
If P (n, 4) = 12 . P (n, 2), find n.
If P (15, r − 1) : P (16, r − 2) = 3 : 4, find r.
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?
How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?
How many 3-digit even number can be made using the digits 1, 2, 3, 4, 5, 6, 7, if no digits is repeated?
In how many ways can the letters of the word 'FAILURE' be arranged so that the consonants may occupy only odd positions?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels occupy only the odd places?
How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:
the vowels always occupy even places?
How many permutations can be formed by the letters of the word, 'VOWELS', when
all vowels come together?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
m men and n women are to be seated in a row so that no two women sit together. if m > n then show that the number of ways in which they can be seated as\[\frac{m! (m + 1)!}{(m - n + 1) !}\]
Find the number of words formed by permuting all the letters of the following words:
INDEPENDENCE
Find the number of words formed by permuting all the letters of the following words:
INDIA
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
In how many ways can the letters of the word 'ALGEBRA' be arranged without changing the relative order of the vowels and consonants?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?
Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.
Prove that the product of 2n consecutive negative integers is divisible by (2n)!
For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1
Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
nCr + 2 · nCr − 1 + nCr − 2 = n + 2Cr.
How many words, with or without meaning can be formed from the letters of the word 'MONDAY', assuming that no letter is repeated, if all letters are used at a time
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.