Advertisements
Advertisements
Question
Four letters E, K, S and V, one in each, were purchased from a plastic warehouse. How many ordered pairs of letters, to be used as initials, can be formed from them?
Solution
Here, we need to find out the number of pairs of the letters that can be formed with the 4 letters.
Required number of ordered pairs = Number of arrangements of four letters, taken two at a time = 4P2
\[= \frac{4!}{\left( 4 - 2 \right)!}\]
\[ = \frac{4!}{2!}\]
\[ = \frac{4 \times 3 \times 2!}{2!}\]
\[ = 4 \times 3\]
\[ = 12\]
APPEARS IN
RELATED QUESTIONS
Convert the following products into factorials:
3 · 6 · 9 · 12 · 15 · 18
Convert the following products into factorials:
(n + 1) (n + 2) (n + 3) ... (2n)
Convert the following products into factorials:
1 · 3 · 5 · 7 · 9 ... (2n − 1)
Prove that:
\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]
If P (5, r) = P (6, r − 1), find r ?
If 5 P(4, n) = 6. P (5, n − 1), find n ?
If P (n, 5) = 20. P(n, 3), find n ?
If P(11, r) = P (12, r − 1) find r.
Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (n, n) = P (n + 1, n + 1) − 1.
If n +5Pn +1 =\[\frac{11 (n - 1)}{2}\]n +3Pn, find n.
Four books, one each in Chemistry, Physics, Biology and Mathematics, are to be arranged in a shelf. In how many ways can this be done?
How many words, with or without meaning, can be formed by using all the letters of the word 'DELHI', using each letter exactly once?
There are 6 items in column A and 6 items in column B. A student is asked to match each item in column A with an item in column B. How many possible, correct or incorrect, answers are there to this question?
In how many ways can the letters of the word 'STRANGE' be arranged so that
the vowels never come together?
How many words can be formed from the letters of the word 'SUNDAY'? How many of these begin with D?
How many different words can be formed with the letters of word 'SUNDAY'? How many of the words begin with N? How many begin with N and end in Y?
In how many ways can a lawn tennis mixed double be made up from seven married couples if no husband and wife play in the same set?
How many words (with or without dictionary meaning) can be made from the letters in the word MONDAY, assuming that no letter is repeated, if all letters are used at a time.
How many three letter words can be made using the letters of the word 'ORIENTAL'?
Find the number of words formed by permuting all the letters of the following words:
RUSSIA
Find the number of words formed by permuting all the letters of the following words:
EXERCISES
Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE
How many words can be formed with the letters of the word 'UNIVERSITY', the vowels remaining together?
How many number of four digits can be formed with the digits 1, 3, 3, 0?
How many words can be formed from the letters of the word 'SERIES' which start with S and end with S?
There are three copies each of 4 different books. In how many ways can they be arranged in a shelf?
A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?
In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?
Find the total number of permutations of the letters of the word 'INSTITUTE'.
The letters of the word 'ZENITH' are written in all possible orders. How many words are possible if all these words are written out as in a dictionary? What is the rank of the word 'ZENITH'?
There are 10 persons named\[P_1 , P_2 , P_3 , . . . . , P_{10}\]
Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
If 35Cn +7 = 35C4n − 2 , then write the values of n.
Write the expression nCr +1 + nCr − 1 + 2 × nCr in the simplest form.