English

If P (5, R) = P (6, R − 1), Find R ? - Mathematics

Advertisements
Advertisements

Question

If P (5, r) = P (6, r − 1), find r ?

Solution

P (5, r) = P (6, r − 1)
or  5Pr = 6Pr-1

\[\frac{5!}{\left( 5 - r \right)!} = \frac{6!}{\left( 6 - r + 1 \right)!}\]
\[ \Rightarrow \frac{\left( 6 - r + 1 \right)!}{\left( 5 - r \right)!} = \frac{6!}{5!}\]
\[ \Rightarrow \frac{(7 - r)!}{\left( 5 - r \right)!} = \frac{6\left( 5! \right)}{5!}\]
\[ \Rightarrow \frac{\left( 7 - r \right)\left( 6 - r \right)\left( 5 - r \right)!}{\left( 5 - r \right)!} = 6\]
\[ \Rightarrow \left( 7 - r \right)\left( 6 - r \right) = 6\]
\[ \Rightarrow \left( 7 - r \right)\left( 6 - r \right) = 3 \times 2\]
\[\text{On comparing the above two equations, we get}: \]
\[7 - r = 3\]
\[ \Rightarrow r = 4\]

shaalaa.com
Factorial N (N!) Permutations and Combinations
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.3 | Q 2 | Page 28

RELATED QUESTIONS

If (n + 2)! = 60 [(n − 1)!], find n. 


If (n + 3)! = 56 [(n + 1)!], find n.


Prove that:

\[\frac{n!}{(n - r)! r!} + \frac{n!}{(n - r + 1)! (r - 1)!} = \frac{(n + 1)!}{r! (n - r + 1)!}\]


Prove that:

\[\frac{(2n + 1)!}{n!}\] = 2n [1 · 3 · 5 ... (2n − 1) (2n + 1)]

If 5 P(4, n) = 6. P (5, n − 1), find n ?


Prove that:1 . P (1, 1) + 2 . P (2, 2) + 3 . P (3, 3) + ... + n . P (nn) = P (n + 1, n + 1) − 1.


Find the number of different 4-letter words, with or without meanings, that can be formed from the letters of the word 'NUMBER'.


How many three-digit numbers are there, with distinct digits, with each digit odd?


How many words, with or without meaning, can be formed by using the letters of the word 'TRIANGLE'?


How many 6-digit telephone numbers can be constructed with digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each number starts with 35 and no digit appears more than once?


If a denotes the number of permutations of (x + 2) things taken all at a time, b the number of permutations of x things taken 11 at a time and c the number of  permutations of x − 11 things taken all at a time such that a = 182 bc, find the value of x.


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letter G always occupies the first place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the letters P and I respectively occupy first and last place?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels are always together?


How many different words can be formed from the letters of the word 'GANESHPURI'? In how many of these words:

the vowels always occupy even places?


How many permutations can be formed by the letters of the word, 'VOWELS', when

there is no restriction on letters?


How many permutations can be formed by the letters of the word, 'VOWELS', when

all vowels come together?


Find the number of words formed by permuting all the letters of the following words:
ARRANGE


Find the number of words formed by permuting all the letters of the following words:
EXERCISES


Find the number of words formed by permuting all the letters of the following words:
CONSTANTINOPLE


Find the total number of arrangements of the letters in the expression a3 b2 c4 when written at full length.


How many permutations of the letters of the word 'MADHUBANI' do not begin with M but end with I?


How many different arrangements can be made by using all the letters in the word 'MATHEMATICS'. How many of them begin with C? How many of them begin with T?


A biologist studying the genetic code is interested to know the number of possible arrangements of 12 molecules in a chain. The chain contains 4 different molecules represented by the initials A (for Adenine), C (for Cytosine), G (for Guanine) and T (for Thymine) and 3 molecules of each kind. How many different such arrangements are possible?


If the permutations of a, b, c, d, e taken all together be written down in alphabetical order as in dictionary and numbered, find the rank of the permutation debac ?


Find the total number of ways in which six '+' and four '−' signs can be arranged in a line such that no two '−' signs occur together.


Prove that the product of 2n consecutive negative integers is divisible by (2n)!


For all positive integers n, show that 2nCn + 2nCn − 1 = `1/2` 2n + 2Cn+1 


Evaluate

\[^ {20}{}{C}_5 + \sum^5_{r = 2} {}^{25 - r} C_4\]

Let r and n be positive integers such that 1 ≤ r ≤ n. Then prove the following:
n · n − 1Cr − 1 = (n − r + 1) nCr − 1


How many words each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?


Write the number of diagonals of an n-sided polygon.


Write the number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines.


Write the number of ways in which 5 red and 4 white balls can be drawn from a bag containing 10 red and 8 white balls.


Write the number of ways in which 12 boys may be divided into three groups of 4 boys each.


Write the total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×