Advertisements
Advertisements
Question
Evaluate each of the following:
P(6, 4)
Solution
P(6,4)
It can also be written as 6P4 .
\[{}^6 P_4 = \frac{6!}{2!}\]
\[ = \frac{6(5)(4)(3)(2!)}{2!}\]
\[ = 6 \times 5 \times 4 \times 3 \]
\[ = 360\]
APPEARS IN
RELATED QUESTIONS
Evaluate 8!
In how many ways can the letters of the word PERMUTATIONS be arranged if the vowels are all together.
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S’s are together?
Find x in each of the following:
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
How many three digit numbers can be formed by using the digits 0, 1, 3, 5, 7 while each digit may be repeated any number of times?
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
Number of all four digit numbers having different digits formed of the digits 1, 2, 3, 4 and 5 and divisible by 4 is
In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is
English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?
How many six-digit telephone numbers can be formed if the first two digits are 45 and no digit can appear more than once?
If (n+2)! = 60[(n–1)!], find n
Find the number of arrangements that can be made out of the letters of the word “ASSASSINATION”.
For all n > 0, nC1 + nC2 + nC3 + …… + nCn is equal to:
The number of ways to arrange the letters of the word “CHEESE”:
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
If `""^(("n" – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n
A test consists of 10 multiple choice questions. In how many ways can the test be answered if each question has four choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
How will the answer change if each question may have more than one correct answers?
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
In how many ways can the letters of the word SUCCESS be arranged so that all Ss are together?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
If the letters of the word FUNNY are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word FUNNY
Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
How many words can be formed with the letters of the word MANAGEMENT by rearranging them?
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is ______.
The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.