Advertisements
Advertisements
Question
Evaluate each of the following:
6P6
Solution
\[{}^6 P_6 = \frac{6!}{(6 - 6)!} \]
\[ = \frac{6!}{0!} \]
\[ = \frac{6!}{1} (\text{Since} , 0! = 1) \]
\[ = 720\]
APPEARS IN
RELATED QUESTIONS
How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?
Find r if `""^5P_r = 2^6 P_(r-1)`
Find r if `""^5P_r = ""^6P_(r-1)`
How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
(i) 4 letters are used at a time,
(ii) all letters are used at a time,
(iii) all letters are used but first letter is a vowel?
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
If three six faced die each marked with numbers 1 to 6 on six faces, are thrown find the total number of possible outcomes ?
Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?
In how many ways can 7 letters be posted in 4 letter boxes?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
Write the number of arrangements of the letters of the word BANANA in which two N's come together.
Write the number of ways in which 5 boys and 3 girls can be seated in a row so that each girl is between 2 boys ?
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
The number of arrangements of the letters of the word BHARAT taking 3 at a time is
The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
Find the rank of the word ‘CHAT’ in the dictionary.
Evaluate the following.
`((3!)! xx 2!)/(5!)`
The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
A test consists of 10 multiple choice questions. In how many ways can the test be answered if each question has four choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
How will the answer change if each question may have more than one correct answers?
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
If the letters of the word FUNNY are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word FUNNY
In how many ways can 5 children be arranged in a line such that two particular children of them are always together
Find the number of permutations of n different things taken r at a time such that two specific things occur together.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
In a certain city, all telephone numbers have six digits, the first two digits always being 41 or 42 or 46 or 62 or 64. How many telephone numbers have all six digits distinct?
The number of 5-digit telephone numbers having atleast one of their digits repeated is ______.
The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.
Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find
C1 | C2 |
(a) How many numbers are formed? | (i) 840 |
(b) How many number are exactly divisible by 2? | (i) 200 |
(c) How many numbers are exactly divisible by 25? | (iii) 360 |
(d) How many of these are exactly divisible by 4? | (iv) 40 |
If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is ______.
The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.