English

Write the Number of Ways in Which 5 Boys and 3 Girls Can Be Seated in a Row So that Each Girl is Between 2 Boys ? - Mathematics

Advertisements
Advertisements

Question

Write the number of ways in which 5 boys and 3 girls can be seated in a row so that each girl is between 2 boys ?

Solution

B_B_B_B_B

Five boys can be arranged amongst themselves in 5! ways, at the places shown above.
The three girls are now to be arranged in the remaining four places taken three at a time = 4P3 = 4!
By fundamental principle of counting, total number of ways = 5! x 4! = 120 x 24= 2880

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.6 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.6 | Q 10 | Page 45

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

How many 4-digit numbers are there with no digit repeated?


How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?


Find r if `""^5P_r = 2^6 P_(r-1)`


How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if

(i) 4 letters are used at a time,

(ii) all letters are used at a time,

(iii) all letters are used but first letter is a vowel?


In how many of the distinct permutations of the letters in MISSISSIPPI do the four I’s not come together?


Find x in each of the following:

\[\frac{1}{4!} + \frac{1}{5!} = \frac{x}{6!}\]

Find x in each of the following:

\[\frac{1}{6!} + \frac{1}{7!} = \frac{x}{8!}\]

How many numbers of four digits can be formed with the digits 1, 2, 3, 4, 5 if the digits can be repeated in the same number?


In how many ways can 5 different balls be distributed among three boxes?


Evaluate each of the following:

10P

Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?


Write the number of all possible words that can be formed using the letters of the word 'MATHEMATICS'.


Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?


The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is


If k + 5Pk + 1 =\[\frac{11 (k - 1)}{2}\]. k + 3Pk , then the values of k are


The number of arrangements of the letters of the word BHARAT taking 3 at a time is


The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is


In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is


If (n+2)! = 60[(n–1)!], find n


How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?


Evaluate the following.

`(3! + 1!)/(2^2!)`


Evaluate the following.

`((3!)! xx 2!)/(5!)`


For all n > 0, nC1 + nC2 + nC3 + …… + nCn is equal to:


If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r


Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?


A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.

What is the maximum number of different answers can the students give?


8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?


A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?


How many strings are there using the letters of the word INTERMEDIATE, if the vowels and consonants are alternative


If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
DANGER


Choose the correct alternative:
The product of r consecutive positive integers is divisible b


Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is


If all permutations of the letters of the word AGAIN are arranged in the order as in a dictionary. What is the 49th word?


Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.


A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.


Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:

C1 C2
(a) Boys and girls alternate: (i) 5! × 6!
(b) No two girls sit together : (ii) 10! – 5! 6!
(c) All the girls sit together (iii) (5!)2 + (5!)2
(d) All the girls are never together : (iv) 2! 5! 5!

Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find

C1 C2
(a) How many numbers are formed? (i) 840
(b) How many number are exactly divisible by 2? (i) 200
(c) How many numbers are exactly divisible by 25? (iii) 360
(d) How many of these are exactly divisible by 4? (iv) 40

The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×