Advertisements
Advertisements
Question
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
Solution
Disclaimer:- (1) Here, we can form 4 digits, 5 digits , 6 digits numbers and so on.... using the given digits. Thus, infinite numbers can be formed.
(2) Taking into account only four digit numbers.
We have to find all the numbers that can be formed by using the digits 1, 2, 3 and 4. This means that repetition of digits is not allowed as all the digits have to be used.
Total numbers that can be formed = Number of arrangements of four digits, taken all at a time = 4! = 24
APPEARS IN
RELATED QUESTIONS
Evaluate 8!
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
How many words, with or without meaning can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
(i) 4 letters are used at a time,
(ii) all letters are used at a time,
(iii) all letters are used but first letter is a vowel?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S’s are together?
If three six faced die each marked with numbers 1 to 6 on six faces, are thrown find the total number of possible outcomes ?
How many 5-digit telephone numbers can be constructed using the digits 0 to 9. If each number starts with 67 and no digit appears more than once?
Find the number of ways in which 8 distinct toys can be distributed among 5 childrens.
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Find the total number of ways in which 20 balls can be put into 5 boxes so that first box contains just one ball ?
In how many ways can 7 letters be posted in 4 letter boxes?
Evaluate each of the following:
6P6
The number of five-digit telephone numbers having at least one of their digits repeated is
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
Evaluate the following.
`(3! xx 0! + 0!)/(2!)`
For all n > 0, nC1 + nC2 + nC3 + …… + nCn is equal to:
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are even?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
Find the number of permutations of n different things taken r at a time such that two specific things occur together.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is ______.
The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.
The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.
Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find
C1 | C2 |
(a) How many numbers are formed? | (i) 840 |
(b) How many number are exactly divisible by 2? | (i) 200 |
(c) How many numbers are exactly divisible by 25? | (iii) 360 |
(d) How many of these are exactly divisible by 4? | (iv) 40 |
If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.
The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.
8-digit numbers are formed using the digits 1, 1, 2, 2, 2, 3, 4, 4. The number of such numbers in which the odd digits do no occupy odd places is ______.