Advertisements
Advertisements
Question
The number of permutations of n different things taking r at a time when 3 particular things are to be included is
Options
n − 3Pr − 3
n − 3Pr
nPr − 3
r ! n − 3Cr − 3
Solution
r ! n − 3Cr − 3
Here, we have to permute n things of which 3 things are to be included.
So, only the remaining (n - 3) things are left for permutation, taking (r - 3) things at a time. This is because 3 things have already been included.
∴ Total number of permutations = r ! n − 3Cr − 3
APPEARS IN
RELATED QUESTIONS
Evaluate 8!
Is 3! + 4! = 7!?
if `1/(6!) + 1/(7!) = x/(8!)`, find x
In how many of the distinct permutations of the letters in MISSISSIPPI do the four I’s not come together?
In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.
A coin is tossed three times and the outcomes are recorded. How many possible outcomes are there? How many possible outcomes if the coin is tossed four times? Five times? n times?
How many 5-digit telephone numbers can be constructed using the digits 0 to 9. If each number starts with 67 and no digit appears more than once?
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?
Find the total number of ways in which 20 balls can be put into 5 boxes so that first box contains just one ball ?
In how many ways can 5 different balls be distributed among three boxes?
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
Write the number of all possible words that can be formed using the letters of the word 'MATHEMATICS'.
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
The number of ways to arrange the letters of the word CHEESE are
If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
If in a group of n distinct objects, the number of arrangements of 4 objects is 12 times the number of arrangements of 2 objects, then the number of objects is
A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is
The number of arrangements of the letters of the word BHARAT taking 3 at a time is
The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is
The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is
Find x if `1/(6!) + 1/(7!) = x/(8!)`
If nP4 = 12(nP2), find n.
In how many ways 5 boys and 3 girls can be seated in a row, so that no two girls are together?
How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?
Find the number of arrangements that can be made out of the letters of the word “ASSASSINATION”.
The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:
Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
How many strings can be formed from the letters of the word ARTICLE, so that vowels occupy the even places?
Find the distinct permutations of the letters of the word MISSISSIPPI?
How many strings are there using the letters of the word INTERMEDIATE, if all the vowels are together
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?
Choose the correct alternative:
The product of r consecutive positive integers is divisible b
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
Find the number of different words that can be formed from the letters of the word ‘TRIANGLE’ so that no vowels are together
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |