Advertisements
Advertisements
Question
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Solution
Each of the 5 letters can be posted in any one of the 7 letter boxes.
∴ Required number of ways of posting the letters = `7xx7xx7xx7xx7=7^5`
APPEARS IN
RELATED QUESTIONS
Compute `(8!)/(6! xx 2!)`
if `1/(6!) + 1/(7!) = x/(8!)`, find x
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?
Find r if `""^5P_r = 2^6 P_(r-1)`
In how many ways can the letters of the word PERMUTATIONS be arranged if the there are always 4 letters between P and S?
Find x in each of the following:
Which of the following are true:
(2 +3)! = 2! + 3!
Find the total number of ways in which 20 balls can be put into 5 boxes so that first box contains just one ball ?
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
Write the number of ways in which 7 men and 7 women can sit on a round table such that no two women sit together ?
The number of permutations of n different things taking r at a time when 3 particular things are to be included is
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
If in a group of n distinct objects, the number of arrangements of 4 objects is 12 times the number of arrangements of 2 objects, then the number of objects is
The number of arrangements of the letters of the word BHARAT taking 3 at a time is
The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is
English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?
If (n+2)! = 60[(n–1)!], find n
Find the rank of the word ‘CHAT’ in the dictionary.
Evaluate the following.
`(3! xx 0! + 0!)/(2!)`
The total number of 9 digit number which has all different digit is:
If `""^(("n" – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n
Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
DANGER
Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
If all permutations of the letters of the word AGAIN are arranged in the order as in a dictionary. What is the 49th word?
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
The total number of 9 digit numbers which have all different digits is ______.
If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.