Advertisements
Advertisements
Question
Find the number of ways in which 8 distinct toys can be distributed among 5 childrens.
Solution
Each of the toy can be distributed in 5 ways.
∴ Total number of ways of distributing the toys =`5xx5xx5xx5xx5xx5xx5xx5=5^8`
APPEARS IN
RELATED QUESTIONS
Find x in each of the following:
A customer forgets a four-digits code for an Automatic Teller Machine (ATM) in a bank. However, he remembers that this code consists of digits 3, 5, 6 and 9. Find the largest possible number of trials necessary to obtain the correct code.
Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?
Evaluate each of the following:
8P3
Evaluate each of the following:
P(6, 4)
In how many ways 4 women draw water from 4 taps, if no tap remains unused?
Write the number of words that can be formed out of the letters of the word 'COMMITTEE' ?
Write the number of all possible words that can be formed using the letters of the word 'MATHEMATICS'.
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
How many numbers greater than 10 lacs be formed from 2, 3, 0, 3, 4, 2, 3 ?
The number of words from the letters of the word 'BHARAT' in which B and H will never come together, is
The number of ways in which the letters of the word 'CONSTANT' can be arranged without changing the relative positions of the vowels and consonants is
If the letters of the word KRISNA are arranged in all possible ways and these words are written out as in a dictionary, then the rank of the word KRISNA is
The product of r consecutive positive integers is divisible by
The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is
The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?
Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
How many strings are there using the letters of the word INTERMEDIATE, if all the vowels are together
How many strings are there using the letters of the word INTERMEDIATE, if vowels are never together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are even?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
Choose the correct alternative:
The product of r consecutive positive integers is divisible b
How many words can be formed with the letters of the word MANAGEMENT by rearranging them?
In how many ways can 5 children be arranged in a line such that two particular children of them are always together
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
Find the number of permutations of n different things taken r at a time such that two specific things occur together.
The number of signals that can be sent by 6 flags of different colours taking one or more at a time is ______.
The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.
Let b1, b2, b3, b4 be a 4-element permutation with bi ∈ {1, 2, 3, .......,100} for 1 ≤ i ≤ 4 and bi ≠ bj for i ≠ j, such that either b1, b2, b3 are consecutive integers or b2, b3, b4 are consecutive integers. Then the number of such permutations b1, b2, b3, b4 is equal to ______.