Advertisements
Advertisements
Question
In how many ways 4 women draw water from 4 taps, if no tap remains unused?
Solution
Number of ways to draw water from the 1st tap = Number of women available to draw water = 4
Number of ways to draw water from the 2nd tap = Number of women available to draw water = 3
Number of ways to draw water from the 3rd tap = Number of women available to draw water = 2
Number of ways to draw water from the 4th tap = Number of women available to draw water = 1
∴ Total number of ways = `4xx3xx2xx1=`\[\times\]1 = 4! = 24
APPEARS IN
RELATED QUESTIONS
Evaluate 4! – 3!
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?
Find n if n – 1P3 : nP4 = 1 : 9
Find r if `""^5P_r = 2^6 P_(r-1)`
In how many of the distinct permutations of the letters in MISSISSIPPI do the four I’s not come together?
In how many ways can the letters of the word ASSASSINATION be arranged so that all the S’s are together?
Find x in each of the following:
How many numbers of four digits can be formed with the digits 1, 2, 3, 4, 5 if the digits can be repeated in the same number?
In how many ways can 7 letters be posted in 4 letter boxes?
Write the number of words that can be formed out of the letters of the word 'COMMITTEE' ?
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
Number of all four digit numbers having different digits formed of the digits 1, 2, 3, 4 and 5 and divisible by 4 is
The product of r consecutive positive integers is divisible by
The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is
Find x if `1/(6!) + 1/(7!) = x/(8!)`
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
How many strings can be formed from the letters of the word ARTICLE, so that vowels occupy the even places?
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
In how many ways can the letters of the word SUCCESS be arranged so that all Ss are together?
A coin is tossed 8 times, how many different sequences of heads and tails are possible?
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are even?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
How many words can be formed with the letters of the word MANAGEMENT by rearranging them?
Find the number of permutations of n different things taken r at a time such that two specific things occur together.
Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
The total number of 9 digit numbers which have all different digits is ______.
The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.
The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.