Advertisements
Advertisements
Question
A coin is tossed 8 times, how many different sequences of heads and tails are possible?
Solution
A coin on tossing has two outcomes.
Tossing a coin once number of outcomes = 2
∴ Tossing a coin 8 times number of outcomes = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 28
∴ The different sequences of heads and tails are 28
APPEARS IN
RELATED QUESTIONS
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
How many 4-digit numbers are there with no digit repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
Find r if `""^5P_r = 2^6 P_(r-1)`
How many numbers of six digits can be formed from the digits 0, 1, 3, 5, 7 and 9 when no digit is repeated? How many of them are divisible by 10 ?
How many natural numbers less than 1000 can be formed from the digits 0, 1, 2, 3, 4, 5 when a digit may be repeated any number of times?
Find the number of ways in which 8 distinct toys can be distributed among 5 childrens.
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Evaluate each of the following:
The number of five-digit telephone numbers having at least one of their digits repeated is
The number of arrangements of the letters of the word BHARAT taking 3 at a time is
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
If `""^10"P"_("r" - 1)` = 2 × 6Pr, find r
Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if each question has four choices?
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many distinct 6-digit numbers are there?
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently is ______.
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
How many words (with or without dictionary meaning) can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
C1 | C2 |
(a) 4 letters are used at a time | (i) 720 |
(b) All letters are used at a time | (ii) 240 |
(c) All letters are used but the first is a vowel | (iii) 360 |