English

How Many Numbers of Six Digits Can Be Formed from the Digits 0, 1, 3, 5, 7 and 9 When No Digit is Repeated? How Many of Them Are Divisible by 10 ? - Mathematics

Advertisements
Advertisements

Question

How many numbers of six digits can be formed from the digits 0, 1, 3, 5, 7 and 9 when no digit is repeated? How many of them are divisible by 10 ?

Solution

The first digit of the number cannot be zero. Thus, it can be filled in 5 ways.
The number of ways of filling the second digit = 5
(as the repetition of digits is not allowed)
The number of ways of filling the third digit = 4
The number of ways of filling the fourth digit = 3
The number of ways of filling the fifth digit = 2
The number of ways of filling the sixth digit = 1
∴ Required numbers =`5xx5xx4xx3xx2xx1=600`

For the number to be divisible by 10, the sixth digit has to be zero.
Now, the first digit can be filled in 5 ways.
Number of ways of filling the second digit = 4
Number of ways of filling the third digit = 3
Number of ways of filling the fourth digit = 2
Number of ways of filling the fifth digit = 1
Number of ways of filling the sixth digit = 1
Total numbers divisible by 10 =`5xx4xx3xx2xx1xx1=120`

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.2 | Q 34 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

if `1/(6!) + 1/(7!) = x/(8!)`, find x


Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?


Find r if `""^5P_r = 2^6 P_(r-1)`


In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.


Find x in each of the following:

\[\frac{1}{6!} + \frac{1}{7!} = \frac{x}{8!}\]

Which of the following are true:

(2 × 3)! = 2! × 3!


In how many ways can 5 different balls be distributed among three boxes?


In how many ways can 7 letters be posted in 4 letter boxes?


In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?


Write the total number of possible outcomes in a throw of 3 dice in which at least one of the dice shows an even number.


The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is


The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is


A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is


The number of different ways in which 8 persons can stand in a row so that between two particular persons A and B there are always two persons, is


In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is


English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?


How many six-digit telephone numbers can be formed if the first two digits are 45 and no digit can appear more than once?


If (n+2)! = 60[(n–1)!], find n


How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?


How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?


Evaluate the following.

`(3! + 1!)/(2^2!)`


For all n > 0, nC1 + nC2 + nC3 + …… + nCn is equal to:


The number of words with or without meaning that can be formed using letters of the word “EQUATION”, with no repetition of letters is:


If `""^(("n"  – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n


Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?


Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?


A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.

How will the answer change if each question may have more than one correct answers?


Find the distinct permutations of the letters of the word MISSISSIPPI?


How many ways can the product a2 b3 c4 be expressed without exponents?


In how many ways can the letters of the word SUCCESS be arranged so that all Ss are together?


Choose the correct alternative:
The product of r consecutive positive integers is divisible b


Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`


Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.


The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is ______.


The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.


If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.


The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ______.


Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.


If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×