Advertisements
Advertisements
Question
Find r if `""^5P_r = 2^6 P_(r-1)`
Solution
∴0 ≤ r ≤ 5
Hence, r ≠ 10
∴r = 3
APPEARS IN
RELATED QUESTIONS
How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once?
In how many of the distinct permutations of the letters in MISSISSIPPI do the four I’s not come together?
Which of the following are true:
(2 × 3)! = 2! × 3!
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?
In how many ways can 5 different balls be distributed among three boxes?
The number of five-digit telephone numbers having at least one of their digits repeated is
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
The number of arrangements of the word "DELHI" in which E precedes I is
The product of r consecutive positive integers is divisible by
In a room there are 12 bulbs of the same wattage, each having a separate switch. The number of ways to light the room with different amounts of illumination is
If nP4 = 12(nP2), find n.
Find the rank of the word ‘CHAT’ in the dictionary.
If n is a positive integer, then the number of terms in the expansion of (x + a)n is:
For all n > 0, nC1 + nC2 + nC3 + …… + nCn is equal to:
The total number of 9 digit number which has all different digit is:
The number of ways to arrange the letters of the word “CHEESE”:
The number of permutation of n different things taken r at a time, when the repetition is allowed is:
Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if each question has four choices?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if the first four questions have three choices and the remaining have five choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
In how many ways can 5 children be arranged in a line such that two particular children of them are never together.
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
The number of 5-digit telephone numbers having atleast one of their digits repeated is ______.
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.
The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.