Advertisements
Advertisements
Question
The number of five-digit telephone numbers having at least one of their digits repeated is
Options
90000
100000
30240
69760
Solution
69760
Total number of five digit numbers (since there is no restriction of the number 0XXXX) =`10xx10xx10xx10xx10=100000`
These numbers also include the numbers where the digits are not being repeated. So, we need to subtract all such numbers.
Number of 5 digit numbers that can be formed without any repetition of digits = `10xx9xx8xx7xx6=30240`∴ Number of five-digit telephone numbers having at least one of their digits repeated = {Total number of 5 digit numbers} - {Number of numbers that do not have any digit repeated} = 100000 - 30240 = 69760
APPEARS IN
RELATED QUESTIONS
Evaluate 8!
In how many ways can the letters of the word PERMUTATIONS be arranged if the there are always 4 letters between P and S?
Which of the following are true:
(2 +3)! = 2! + 3!
How many numbers of four digits can be formed with the digits 1, 2, 3, 4, 5 if the digits can be repeated in the same number?
Evaluate each of the following:
P(6, 4)
Write the number of all possible words that can be formed using the letters of the word 'MATHEMATICS'.
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
How many numbers greater than 10 lacs be formed from 2, 3, 0, 3, 4, 2, 3 ?
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
The number of ways to arrange the letters of the word CHEESE are
The number of ways in which 6 men can be arranged in a row so that three particular men are consecutive, is
A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is
How many five digits telephone numbers can be constructed using the digits 0 to 9 If each number starts with 67 with no digit appears more than once?
How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?
How many 6-digit telephone numbers can be constructed with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 if each numbers starts with 35 and no digit appear more than once?
- In how many ways can 8 identical beads be strung on a necklace?
- In how many ways can 8 boys form a ring?
Find the rank of the word ‘CHAT’ in the dictionary.
Evaluate the following.
`(3! + 1!)/(2^2!)`
Evaluate the following.
`((3!)! xx 2!)/(5!)`
The possible outcomes when a coin is tossed five times:
Determine the number of permutations of the letters of the word SIMPLE if all are taken at a time?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
Find the distinct permutations of the letters of the word MISSISSIPPI?
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?
How many strings are there using the letters of the word INTERMEDIATE, if all the vowels are together
Find the number of permutations of n different things taken r at a time such that two specific things occur together.
Ten different letters of alphabet are given. Words with five letters are formed from these given letters. Then the number of words which have atleast one letter repeated is ______.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.
How many words (with or without dictionary meaning) can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
C1 | C2 |
(a) 4 letters are used at a time | (i) 720 |
(b) All letters are used at a time | (ii) 240 |
(c) All letters are used but the first is a vowel | (iii) 360 |
If 1P1 + 2. 2p2 + 3. 3p3 + ....... 15. 15P15 = qPr – s, 0 ≤ s ≤ 1, then q+sCr–s is equal to ______.
8-digit numbers are formed using the digits 1, 1, 2, 2, 2, 3, 4, 4. The number of such numbers in which the odd digits do no occupy odd places is ______.