Advertisements
Advertisements
Question
How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?
Solution
The required numbers are lesser than 1000.
They are one digit, two-digit or three-digit numbers.
There are five numbers to be used without repetition.
One digit number: One-digit numbers are 5.
Two-digit number: 10th place can be filled by anyone of the digits by 5 ways and 1’s place can be 4 filled by any of the remaining four digits in 4 ways.
∴ Two-digit number are 5 × 4 = 20.
Three-digit number: 100th place can be filled by any of the 5 digits, 10th place can be filled by 4 digits and one’s place can be filled by 3 digits.
∴ Three digit numbers are = 5 × 4 × 3 = 60
∴ Total numbers = 5 + 20 + 60 = 85.
APPEARS IN
RELATED QUESTIONS
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
If three six faced die each marked with numbers 1 to 6 on six faces, are thrown find the total number of possible outcomes ?
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
The number of arrangements of the word "DELHI" in which E precedes I is
Three men have 4 coats, 5 waist coats and 6 caps. In how many ways can they wear them?
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 2, 3, 4 and 5 without repetitions. The total number of ways this can be done is ______.
Using the digits 1, 2, 3, 4, 5, 6, 7, a number of 4 different digits is formed. Find
C1 | C2 |
(a) How many numbers are formed? | (i) 840 |
(b) How many number are exactly divisible by 2? | (i) 200 |
(c) How many numbers are exactly divisible by 25? | (iii) 360 |
(d) How many of these are exactly divisible by 4? | (iv) 40 |