Advertisements
Advertisements
Question
The number of ways in which 6 men can be arranged in a row so that three particular men are consecutive, is
Options
4! × 3!
4!
3! × 3!
none of these.
Solution
4! × 3!
According to the question, 3 men have to be 'consecutive' means that they have to be considered as a single man.
But, these 3 men can be arranged among themselves in 3! ways.
And, the remaining 3 men, along with this group, can be arranged among themselves in 4! ways.
∴ Total number of arrangements = 4! × 3!
APPEARS IN
RELATED QUESTIONS
From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?
Find r if `""^5P_r = 2^6 P_(r-1)`
Find r if `""^5P_r = ""^6P_(r-1)`
In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.
In how many ways can three jobs I, II and III be assigned to three persons A, B and C if one person is assigned only one job and all are capable of doing each job?
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
Write the number of ways in which 5 boys and 3 girls can be seated in a row so that each girl is between 2 boys ?
How many numbers greater than 10 lacs be formed from 2, 3, 0, 3, 4, 2, 3 ?
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
The number of ways to arrange the letters of the word CHEESE are
Number of all four digit numbers having different digits formed of the digits 1, 2, 3, 4 and 5 and divisible by 4 is
A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is
The product of r consecutive positive integers is divisible by
The number of ways in which the letters of the word ARTICLE can be arranged so that even places are always occupied by consonants is
English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?
If (n+2)! = 60[(n–1)!], find n
How many numbers lesser than 1000 can be formed using the digits 5, 6, 7, 8, and 9 if no digit is repeated?
If nP4 = 12(nP2), find n.
In how many ways 5 boys and 3 girls can be seated in a row, so that no two girls are together?
Evaluate the following.
`(3! + 1!)/(2^2!)`
8 women and 6 men are standing in a line. How many arrangements are possible if any individual can stand in any position?
Find the distinct permutations of the letters of the word MISSISSIPPI?
How many ways can the product a2 b3 c4 be expressed without exponents?
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
How many strings are there using the letters of the word INTERMEDIATE, if vowels are never together
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
If the letters of the word FUNNY are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word FUNNY
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
Three married couples are to be seated in a row having six seats in a cinema hall. If spouses are to be seated next to each other, in how many ways can they be seated? Find also the number of ways of their seating if all the ladies sit together.
The number of different words that can be formed from the letters of the word INTERMEDIATE such that two vowels never come together is ______.
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
How many words (with or without dictionary meaning) can be made from the letters of the word MONDAY, assuming that no letter is repeated, if
C1 | C2 |
(a) 4 letters are used at a time | (i) 720 |
(b) All letters are used at a time | (ii) 240 |
(c) All letters are used but the first is a vowel | (iii) 360 |
8-digit numbers are formed using the digits 1, 1, 2, 2, 2, 3, 4, 4. The number of such numbers in which the odd digits do no occupy odd places is ______.