Advertisements
Advertisements
Question
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
Options
True
False
Solution
This statement is False.
Explanation:
Arrangement of n things, r taken at a time in which m things occur together.
So, number of object excluding m object = (r – m)
Here, we first arrange (r – m + 1) object
∴ Number of arrangements = (r – m + 1)!
m objects can be arranged in m! ways
So, the required number of arrangements = (r – m + 1)! × m!
APPEARS IN
RELATED QUESTIONS
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
Find x in each of the following:
Which of the following are true:
(2 +3)! = 2! + 3!
How many natural numbers less than 1000 can be formed from the digits 0, 1, 2, 3, 4, 5 when a digit may be repeated any number of times?
Three dice are rolled. Find the number of possible outcomes in which at least one die shows 5 ?
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
Evaluate each of the following:
P(6, 4)
Write the number of 5 digit numbers that can be formed using digits 0, 1 and 2 ?
Write the number of words that can be formed out of the letters of the word 'COMMITTEE' ?
Write the remainder obtained when 1! + 2! + 3! + ... + 200! is divided by 14 ?
The number of words that can be formed out of the letters of the word "ARTICLE" so that vowels occupy even places is
If k + 5Pk + 1 =\[\frac{11 (k - 1)}{2}\]. k + 3Pk , then the values of k are
The number of words that can be made by re-arranging the letters of the word APURBA so that vowels and consonants are alternate is
Find x if `1/(6!) + 1/(7!) = x/(8!)`
- In how many ways can 8 identical beads be strung on a necklace?
- In how many ways can 8 boys form a ring?
The number of words with or without meaning that can be formed using letters of the word “EQUATION”, with no repetition of letters is:
Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?
How many strings are there using the letters of the word INTERMEDIATE, if no two vowels are together
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are even?
Choose the correct alternative:
The product of r consecutive positive integers is divisible b
How many words can be formed with the letters of the word MANAGEMENT by rearranging them?
The number of signals that can be sent by 6 flags of different colours taking one or more at a time is ______.
Find the number of permutations of n distinct things taken r together, in which 3 particular things must occur together.
In a certain city, all telephone numbers have six digits, the first two digits always being 41 or 42 or 46 or 62 or 64. How many telephone numbers have all six digits distinct?
The number of permutations of n different objects, taken r at a line, when repetitions are allowed, is ______.
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |
Ten different letters of an alphabet are given. Words with five letters are formed from these given letters. Determine the number of words which have at least one letter repeated.