Advertisements
Advertisements
प्रश्न
The number of ways in which 6 men can be arranged in a row so that three particular men are consecutive, is
पर्याय
4! × 3!
4!
3! × 3!
none of these.
उत्तर
4! × 3!
According to the question, 3 men have to be 'consecutive' means that they have to be considered as a single man.
But, these 3 men can be arranged among themselves in 3! ways.
And, the remaining 3 men, along with this group, can be arranged among themselves in 4! ways.
∴ Total number of arrangements = 4! × 3!
APPEARS IN
संबंधित प्रश्न
Evaluate 8!
if `1/(6!) + 1/(7!) = x/(8!)`, find x
From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person cannot hold more than one position?
In how many ways can three jobs I, II and III be assigned to three persons A, B and C if one person is assigned only one job and all are capable of doing each job?
How many natural numbers less than 1000 can be formed from the digits 0, 1, 2, 3, 4, 5 when a digit may be repeated any number of times?
Find the number of ways in which 8 distinct toys can be distributed among 5 childrens.
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated ?
In how many ways can 4 letters be posted in 5 letter boxes?
Write the number of all possible words that can be formed using the letters of the word 'MATHEMATICS'.
Write the number of ways in which 5 boys and 3 girls can be seated in a row so that each girl is between 2 boys ?
The number of permutations of n different things taking r at a time when 3 particular things are to be included is
The number of five-digit telephone numbers having at least one of their digits repeated is
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
The number of arrangements of the word "DELHI" in which E precedes I is
A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is
English alphabet has 11 symmetric letters that appear same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X and Y. How many symmetric three letters passwords can be formed using these letters?
Find the number of arrangements that can be made out of the letters of the word “ASSASSINATION”.
The number of ways to arrange the letters of the word “CHEESE”:
If `""^(("n" – 1))"P"_3 : ""^"n""P"_4` = 1 : 10 find n
Suppose 8 people enter an event in a swimming meet. In how many ways could the gold, silver and bronze prizes be awarded?
A test consists of 10 multiple choice questions. In how many ways can the test be answered if question number n has n + 1 choices?
8 women and 6 men are standing in a line. In how many arrangements will all 6 men be standing next to one another?
A coin is tossed 8 times, how many different sequences of heads and tails are possible?
If the letters of the word GARDEN are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, then find the ranks of the words
GARDEN
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
Find the sum of all 4-digit numbers that can be formed using digits 0, 2, 5, 7, 8 without repetition?
In how many ways can 5 children be arranged in a line such that two particular children of them are always together
In how many ways can 5 children be arranged in a line such that two particular children of them are never together.
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
Find the number of different words that can be formed from the letters of the word ‘TRIANGLE’ so that no vowels are together
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.
The number of 5-digit telephone numbers having atleast one of their digits repeated is ______.
The total number of 9 digit numbers which have all different digits is ______.
The number of permutations by taking all letters and keeping the vowels of the word ‘COMBINE’ in the odd places is ______.