Advertisements
Advertisements
प्रश्न
The number of permutations of n different things taking r at a time when 3 particular things are to be included is
पर्याय
n − 3Pr − 3
n − 3Pr
nPr − 3
r ! n − 3Cr − 3
उत्तर
r ! n − 3Cr − 3
Here, we have to permute n things of which 3 things are to be included.
So, only the remaining (n - 3) things are left for permutation, taking (r - 3) things at a time. This is because 3 things have already been included.
∴ Total number of permutations = r ! n − 3Cr − 3
APPEARS IN
संबंधित प्रश्न
Evaluate 8!
Evaluate `(n!)/((n-r)!)`, when n = 9, r = 5
How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?
Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated. How many of these will be even?
Find r if `""^5P_r = ""^6P_(r-1)`
In how many ways can the letters of the word PERMUTATIONS be arranged if the there are always 4 letters between P and S?
Find x in each of the following:
Find the number of ways in which one can post 5 letters in 7 letter boxes ?
In how many ways can 7 letters be posted in 4 letter boxes?
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
Write the total number of possible outcomes in a throw of 3 dice in which at least one of the dice shows an even number.
Write the number of all possible words that can be formed using the letters of the word 'MATHEMATICS'.
The number of ways to arrange the letters of the word CHEESE are
Number of all four digit numbers having different digits formed of the digits 1, 2, 3, 4 and 5 and divisible by 4 is
The number of arrangements of the letters of the word BHARAT taking 3 at a time is
How many six-digit telephone numbers can be formed if the first two digits are 45 and no digit can appear more than once?
Evaluate `("n"!)/("r"!("n" - "r")!)` when n = 5 and r = 2.
The possible outcomes when a coin is tossed five times:
A test consists of 10 multiple choice questions. In how many ways can the test be answered if question number n has n + 1 choices?
A student appears in an objective test which contain 5 multiple choice questions. Each question has four choices out of which one correct answer.
What is the maximum number of different answers can the students give?
A coin is tossed 8 times, how many different sequences containing six heads and two tails are possible?
How many strings are there using the letters of the word INTERMEDIATE, if the vowels and consonants are alternative
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many distinct 6-digit numbers are there?
Each of the digits 1, 1, 2, 3, 3 and 4 is written on a separate card. The six cards are then laid out in a row to form a 6-digit number. How many of these 6-digit numbers are divisible by 4?
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
Find the sum of all 4-digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed?
Choose the correct alternative:
If `""^(("n" + 5))"P"_(("n" + 1)) = ((11("n" - 1))/2)^(("n" + 3))"P"_"n"`, then the value of n are
In how many ways can 5 children be arranged in a line such that two particular children of them are always together
In how many ways 3 mathematics books, 4 history books, 3 chemistry books and 2 biology books can be arranged on a shelf so that all books of the same subjects are together.
Suppose m men and n women are to be seated in a row so that no two women sit together. If m > n, show that the number of ways in which they can be seated is `(m!(m + 1)!)/((m - n + 1)1)`
The number of 5-digit telephone numbers having atleast one of their digits repeated is ______.
The total number of 9 digit numbers which have all different digits is ______.
In the permutations of n things, r taken together, the number of permutations in which m particular things occur together is `""^(n - m)"P"_(r - m) xx ""^r"P"_m`.
Five boys and five girls form a line. Find the number of ways of making the seating arrangement under the following condition:
C1 | C2 |
(a) Boys and girls alternate: | (i) 5! × 6! |
(b) No two girls sit together : | (ii) 10! – 5! 6! |
(c) All the girls sit together | (iii) (5!)2 + (5!)2 |
(d) All the girls are never together : | (iv) 2! 5! 5! |
If m+nP2 = 90 and m–nP2 = 30, then (m, n) is given by ______.
8-digit numbers are formed using the digits 1, 1, 2, 2, 2, 3, 4, 4. The number of such numbers in which the odd digits do no occupy odd places is ______.